找回密码
 加入慢享
猜你喜欢
旅行常客论坛

在线计算专题(07):不定积分、定积分与重积分、曲线、曲面积分的计算

[复制链接]
发表于 2020-6-29 07:20:00 | 显示全部楼层 |阅读模式

积分既是高等数学、数学分析、微积分课程的重点,也是难点. 与微分方程一样,很多积分很难用初等的方法直接计算得到解析的结果. 因此,能够计算出来的积分一般都是符合一定的特定结构,或者经过适当变换后,转换为可以计算的结构,然后再来讨论其计算方法. 因此,很多积分借助计算机也无法得到解析结果,甚至一些人工能够计算出来的积分,计算机也无法计算出来. 所以,用计算机计算积分也是一个尝试的过程.
对于多元函数的积分计算,由于Wolfram Alpha计算搜索引擎中表达式描述的局限性,不能像Mathematica中那样直接通过定义积分区域的方式来直接计算得到积分结果,而一般只能在构建累次积分以后才能完成计算. 
本文基于定积分的计算,以实例的形式,介绍应用Wolfram Alpha计算搜索引擎来计算不定积分、定积分、反常积分、重积分、曲线、曲面积分以及梯度、散度和旋度的实现方法. 对于需要计算的积分,一般基于给出的表达式,只要适当修改被积函数表达式和积分上下限,就可以直接得到输入表达式来执行计算得到结果.
目录
  • 1、原函数与不定积分的计算
  • 2、定积分、反常积分计算与变限积分求导
  • 3、计算重积分
  • 4、计算曲线积分
  • 5、计算曲面积分
  • 6、梯度、散度与旋度的计算
  • 工具:WolframAlpha计算搜索引擎

  • 位置:http://www.wolframalpha.com,打开网页直接操作,其中windows app也可以通过Windows 10应用商店下载安装!

特别提示:如果使用网页版执行操作,不需要下载、安装任何软件,也不需要点任何链接,直接网页打开的那个搜索文本编辑框(如下图)输入表达式就可以了!系列推文中除特别强调外,显示的结果都能直接看到的!

  • 手机:可以直接打开网页操作,或者自行网络搜索下载安装WolframAlpha APP版本操作

  • 执行界面:网页、手机或平板等操作界面基本一致.

1、原函数与不定积分的计算

例1 计算以下不定积分

参考输入表达式为

integrate sin(x)^5 dx

执行结果显示如下.

得到结果为一个原函数加上一个任意常数(constant).

例2  计算以下不定积分

参考输入表达式为

integrate max(x,x^2-x) dx

执行结果显示如下.

当然也会后面显示积分曲线和一些其他的积分结果. 并且对其中出现的max函数进行了解释,告知为这是一个最大值函数.

例3  计算以下不定积分

参考输入表达式为

integrate sinx/x dx

这是一个不可积函数,也可以执行计算得到结果. 只不过这个时候得到的是一个正弦积分函数SinIntegral(x),缩写为Si(x),它一样的可以计算函数值. 另外在积分之后给出了积分函数的带皮亚诺余项的麦克劳林公式和一些定积分、反常积分结果. 如下图所示.

2、定积分、反常积分计算与变限积分求导

例1  计算以下定积分

参考输入表达式为

integrate (sinx+cos(2x))^2,x=0 to pi/2

执行结果不仅给出了积分结果,也给出了定积分的几何意义,最后还给出了不定积分结果.

例2  计算以下无穷限的反常积分

参考输入表达式为

integrate 1/((1+x^2)^2),x=0 to oo

无穷大为两个字母oo,表示正无穷大,前面加负号表示负无穷大. 执行结果得到积分值,也给出被积函数的不定积分结果.

例3  求如下变限积分关于变量的导数

参考输入表达式为

d/dx (integrate f(t)g(x) dt from t= a(x) to t = b(x))

执行结果显示如下.

3、计算重积分

例1  计算以下二重积分

积分对应的累次积分表达式为

参考输入表达式为

integrate x/(1+y) dy dx, 0<=x<=1, 2x<=y<=x^2+1

注意以上输入表达式中如果输入dy dx,则表示先对积分,再对积分,与后面积分限的先后顺序无关;如果不输入dy dx,则系统会自动以常数区间范围后积分来得到结果,如输入表达式

integrate x/(1+y), 0<=x<=1, 2x<=y<=x^2+1

执行后的结果与上面表达式一致.执行结果显示如下.

如果两个积分限都为常数,则建议加上dy dx或者dx dy,不然一般按照排后面的先积分的顺序计算积分,比如以下三行表达式,第一个表示先积分,第二个表示先,而第三个则是先

integrate x y^2, 0<=x<=1, 2<=y<=3integrate x y^2, 2<=y<=3, 0<=x<=1integrate x y^2 dy dx, 2<=y<=3, 0<=x<=1

例2是由曲面 与平面, , 所围成的闭区域,计算三重积分

三重积分的累次积分表达式为

则参考输入表达式为

integrate x y^2 z^3 dz dy dx, 0<=x<=1,0<=y<=x,0<=z<=x y

执行结果显示如下.

【注】 三次累次积分的计算一般需要加上dz dy dx,否则可能会按照二重积分计算,后面的变量范围可能认为是参数而得不到需要的结果. 对于dz dy dx则按照从内到外的次序计算,即先对积分,再对积分,最后对积分的次序执行.

对于二重积分极坐标、三重积分直角坐标、柱坐标、球坐标一般不能像Mathematica中那样在区域上,直接计算积分而不需要构建累次积分表达式(具体使用方法参见推文:一道积分算一天,你确信积分对了吗?). 这里一般先构建累次积分表达式,然后来执行计算. 关于其他坐标系中变量符号虽然可以借助于输入法的特殊符号键盘方式输入,也可以直接由编辑框下面的扩展键盘[Extended Keyboard]输入,包括积分符号. 但是,可能系统内部对日常的变量, , 比较敏感,对其他符号描述变量不一定认定为合适的符号识别,所以建议积分变量都用, , 变量描述比较容易计算得到需要的结果,比如计算如下球坐标系下的累次积分

建议输入的参考表达式为

integrate z^3 siny cosy dz dy dx, 0≤x≤2pi,0≤y≤pi/4,0≤z≤2a cosy

其中, , 表示. 执行计算的结果如下

4、计算曲线积分

曲线积分、曲面积分和重积分一样,一般转换为定积分,或累次积分表达式来完成计算.

例1  计算以下对弧长的曲线积分

由对弧长的曲线积分的参数方程方法,可得曲线参数方程为

参考输入表达式为

integrate cost sint+(cost)^2+1,0≤t≤2π

其中不等号和圆周率可以直接通过输入编辑框左下角位置的[Extended Keyboard]打开特殊符号输入面板输入,或者由输入法的特殊符号虚拟键盘输入,输入方式及执行结果显示如下.

结果不仅显示定积分结果,也给出了定积分的几何描述以及不定积分结果.

例2  计算以下对坐标的曲线积分

由对坐标的曲线积分的直接计算法,曲线的参数方程为

直接将表达式代入被积表达式,可得

为计算,输入表达式

((1-x^2)^(1/2))'

执行计算得到结果为

将它代入后得积分为

直接计算定积分,对应的输入的参考表达式为

integrate e^x+((1-x^2)^(1/2))-(e^((1-x^2)^(1/2))+x)(-x/((1-x^2)^(1/2))),-1<=x<=1

执行计算得到结果为

5、计算曲面积分

例1 用对面积的曲面积分计算圆柱面 位于上方及平面下方那部分柱面的面积.

曲面图形如下.

由对面积的曲面积分的几何意义,由于曲面关于面对称,记 前半部分,于是曲面方程可以表示为

从而可知面积

,输入表达式计算根式,参考表达式为

(1+(d/dy (5^(1/2)/3)((9-y^2)^(1/2)))^2+(d/dz (5^(1/2)/3)((9-y^2)^(1/2)))^2)^(1/2)

计算得到的结果为

可能常用的是蓝色方框的结果. 因此可得

计算二重积分的参考输入表达式为

integrate (2/3) ((4y^2-81)/(y^2-9))^(1/2),dz dy, 0<=y<=3,0<=z<=y

执行计算后显示的结果为

例2  已知 所围成圆台面,法向指向外侧.计算

积分区域关于, 面都对称,而前面两个部分的函数分别关于变量为偶函数,所以由偶零奇倍的计算性质,积分为

由于积分曲面为简单型曲面,于是由对坐标的曲面积分计算的:一投、二代、三定号思路,可得投影区域为

所以最终需要计算的积分由极坐标计算方法为

借助符号输入面板输入参考表达式为

integrate -e^ρ,dρ dθ, 0≤θ≤2π,1≤ρ≤2

执行后得计算结果为

6、梯度、散度与旋度的计算

例1  计算以下函数的梯度

参考输入表达式为

grad x^2 y^3 sinz

或者将grad替换为del,执行结果显示如下.

例2  计算以下向量场的散度

参考输入表达式为

div (x^2+y,y^2-x,z^2+x y z)

执行结果显示如下.

例3  计算以下向量场的旋度

参考输入表达式为

curl (x^2+y,y^2-x,z^2+x y z)

执行结果显示如下.

推荐阅读

微信公众号:考研竞赛数学(ID: xwmath)大学数学公共基础课程分享交流平台!支持咱号请点赞分享!

↓↓↓阅读原文查看更多相关内容

回复

使用道具 举报

快速回复 返回顶部 返回列表